CS 3 HANDOUT

Kinds of Programming

Objectives

1) Differentiate structured programming from object-oriented programming.

2)) Identify the features of object-oriented language and explain how they contribute towards

facilitating the software development process.

3) 3) Identify the Java construct for supporting inheritance, polymorphism, encapsulation and

abstraction.

Structured Programming

Structured programming is characterized by having one entry and exit point and step-by-step program execution. It allows sequence, decision and loop constructs to be used in the program.

It also provides for compartmentalization of code and data which is the language’s ability to section off and hide from the rest of the program all the information and instruction necessary to perform a specific task. This is implemented by using subroutines or modules (methods).

It also makes use of global and local variables and allows the language to have functions declared within other functions.

Some examples of structured-programming languages are C, Pascal, and Fortran.

Object-oriented Programming (OOP)

Object-oriented programming is characterized by modeling the properties and behavior of real objects in the software.

It makes use of classes, which can be compared to car factories having blueprints (plans) and instructions from which specific cars are produced. The cars are the objects derived from the class factory.

Classes contain members, the fields (or data) and the methods that operate on the fields.

C++ and Java are samples of object-oriented programming languages.

The use of the object-oriented approach in programming has become widespread as its advantages have been demonstrated in complex software such as CAD (Computer Aided Design), databases, etc.

Many of these applications were written in C++ which makes use of pointers that allow flexibility and efficiency but at the same time make C++ difficult and unsafe to use.

Object-oriented programming concepts

Class

A class is the template used for designing the properties and behavior (data and methods) of objects, and from which an object is derived.

Object

An object is an instance of a class. It contains both data (member fields or variables) and code (methods).

Member fields

1. Member fields specify the data types defined in the class

2. The design of a class begins by identifying the properties that are relevant to the objective of the system.

3. Consider a very simple class that represents location in a two-dimensional plane. The location is defined by x and y coordinates, which is its properties and therefore the member fields of the class.
Member methods

1. Member methods specify the operations on the member fields

2. The method to be supported is influenced by the member fields of the class. In the Location example, the methods will depend on how x and y are designed to change and which fields need to be exposed to the other objects.
3. To modify location, the AbsMove and the RelMove methods can be added as attributes.

4. Other objects may want to be interested in location can use the getX and getY methods returning the values of x and y coordinates.

Basic OOP design concepts

Abstraction

Abstraction refers to the hiding of non-essential details in a model and providing only the mechanism for specifying those that are relevant to the objective.

An example is when you drive a car. You don’t need to know how the engine works to be able to drive. You only need to know how to use the steering wheel and the other parts designed to move the car.

Object-oriented Java promotes abstraction by allowing classes to bed used without the need to understand its internal mechanism.

Encapsulation

Encapsulation refers to the packaging of the class definition in such a way that only those methods and properties intended to interface with other objects will be exposed, while the rest will be inaccessible to the rest of the program.

Inheritance

Inheritance provides the mechanism that enables a program to acquire and extend the properties and behavior of an existing software.

Polymorphism

Polymorphism provides the mechanism that enables child classes to modify an existing behavior of the parent class.

Introduction to Java Programming

Objectives

1. Learn the Java program structure and the essential methods

2. Learn how to compile and run a simple Java program

3. Learn the different characteristics of Object-oriented Java.
The Java Programming Language

Java is a relatively new programming language. Developed by Sun Microsystems, it came out in 1995 and has since then become the fastest growing programming language ever.

Before Java was introduced, the C language was the norm in programming especially in the 80's. Yet C is still here because of its capability to handle the increasing complexity of programs developed today. After C came C++, which further expanded the C Language capabilities to include OOP features. But when the world wide web came, a need for a new language arose. Java was then created.

Java, a language highly related to the C language, was developed by James Gosling, Patrick Naughton, Chris Warth, Ed Frank & Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working version. By spring of '95 more people have contributed to the design and evolution of Java. The Internet catapulted Java to the forefront of programming & Java made an enormous effect on the Internet.

Java expands the universe of objects that can move freely on the web. As a result Java created the applet, a small program that is embedded in an HTML code. In the beginning, the prime motivation of Java was for a platform-independent language that could be used to create software that can be embedded in various devices. Now it is used as a prime tool in cyberspace.

 Two Types of Java Program

1) Application - a standalone program that is compiled and run using a Java interpreter.

e.g.

public class Helloworld
{

public static void main (String arg[]) {

System.out.println (“Hello world”);

}

}

public: an access modifier for class and methods which indicates that a particular class or method can be accessed by anything and anywhere

Helloworld: this is the class name. For an Application class, the class name is the same as the filename.

static: a keyword that tells the compiler that this is a method that is usable in the
context of the class Helloworld. It makes possible the application class’ being standalone.

void: indicates that this method does not return anything

String arg[]: declares the String array arg. It contains arguments typed on the command line

System.out.println(): a built-in method used to display any string value on the screen

“Hello World”: a string value or constant to be displayed on the screen

2) Applet – a Java class or program that is embedded in an HTML file and is downloaded and run in a Java enabled web browser.

Running Java Programs (using the command line)

1. First and foremost write the source code of the program using any text editor such as Notepad.

2. After completion save the file as <class_name>.java
3. Run MS-DOS and go to the file's directory

4. Set the path by typing "path=%path%;<path>
<path> is the path of where jdk is saved

5. To compile, type "javac <class_name>.java"

6. To run, type "java <class_name>"

Elements of Java programming

1. Java programming language/Java program

2. Java Virtual Machine

3. Java API (Application Programming Interface)

4. Java Runtime Environment (JRE)

Elements of a Java Source file

1. optional package declaration

2. import statements

3. class and interface definitions

Java Virtual Machine (JVM)

The JVM is an imaginary machine that is implemented by emulating it in software on a real machine. It provides the hardware platform specifications. The JVM also takes care of reading compiled byte codes that are platform independent.

Application Programming Interface

The Java API is a large collection of ready-made software components (built-in classes and methods) that provide many useful capabilities. These components provide standard ways to read and write files, manipulate strings, Build GUI, & other essential functions.

The components of the Java API are grouped into libraries called packages. The components of these packages are standard across all implementations of Java, so the program that uses them to implement some function will run properly on any computer system that implements Java. In addition, the components are already debugged, so using them reduces the total effort to write and debug a program.

Java Runtime Environment

The JRE does the following tasks loads the code, verifies the code and executes the code. It allows Java to be a programming language that is well suited to designing software that works in conjunction with the Internet.

Thus, Java is a cross-platform language, which means its programs can be designed to run the same way on Microsoft Windows, Apple Macintosh, UNIX, etc. Java extends beyond desktops to run devices such as televisions, wristwatches, and cell phones.

Characteristics of Java

Object-oriented

An object-oriented language deals with objects. Objects contain both data and code. Objects are instances of a particular class, which is a definition of the member variables and methods the object offers.

Portable

Java code is compiled into a platform-independent machine code called bytecode. Java makes use of the JVM – Java Virtual Machine, a special kind of interpreter.

Multithreaded

Java is capable of running several applications simultaneously. This is done by using threads. A thread is a part of the Java program that is set up to run on its own. Threads can share data and code and usually used for controlling animation.

Automatic Garbage Collection

Java allows for reclaiming unused memory space. This is to ensure that the space allocated by the JVM when objects are created are freed when these objects are no longer in use.

Secure

Java provides a mechanism for protecting the system against inadvertent security violations. This is done both at the documentation and bytecode level.

Network and Internet available

Java supports network programming and provides extensive support for internet applications.

Simple

Java is rooted in C++ but is considered to be much simpler since it does not make use of pointers and provides a comprehensive library of classes and methods.

JAVA Language Elements

Identifiers

An identifier
1. is a name given to a variable.

2. can start with a letter, underscore (_), or dollar sign ($).

3. no special characters except for those indicated above

4. is case-sensitive.

5. can be as long as you want it to be. There are no limits to the number of characters you can use.

e.g
identifier

userName

$change

User_Name

_sys_ad

Java Keywords

Keywords identify a data type name or a program construct name. Following is a list of some of the Java keywords.

abstract
char

else
for

interface
private
switch true

boolean
extends
if
long

public
synchronized

try

break

continue
false

implements
native
return

this void

byte

default
final

import
new

short
throw
volatile

case

do

finally
instanceof

null
static
throws
while

catch

double float
int
 package
super
transient

Variables

Variables are identifiers that can be assigned different values one at any given point in the program. Their values can be changed but not their data type.

 Syntax for declaring variables:

 <data type or class name> <variablename> [= <initial value>] [,<variablename2>,…] ;

e.g.

int x = 2; // assigns a value to x

x = 10; // assigns a new value to

Constants

Constants are identifiers whose values cannot be changed. The final keyword is used to declare a data to be constant

e.g.

final int x = 821;

 // assigns a constant value of 821 to x

Primitive Data Types

The Java programming language defines four groups of primitive data types. They are said to be primitive since variables of these type are automatically given exact memory locations.

1) boolean – A logical data type which has two literal values: true and false.

e.g.

 boolean truth = true;

// declares the variable truth as

// boolean and assigns it the value true

2) char – A textual data type which represents a 16-bit Unicode character. Its literal value is enclosed in single quotations. The following notations

 are used:

e.g
char c = ‘a’;

‘e’, ‘*’, ‘@’ literal variables

‘/t’ a tab

’/u????’ a specific Unicode character (????) is replaced with exactly four hexadecimal digits

 Unicode system - 16 bits, 216 = number of characters available in Unicode

 ASCII – 28 = 256 characters because each character is 8bits in size

3) integral – It is declared using any of four keywords: byte, short, int, and long. The three types used are:

a) decimal;

b) octal, in which the leading 0 indicates an octal value;

c) hexadecimal, in which the leading 0x indicates a hexadecimal value.

The default data type is int and long is defined by the letter “l” or “L”. Given below are the ranges of the integral data types:

TYPE

INTEGER LENGTH

RANGE

byte

8 bits

 -27 to 27 -1

short

16 bits

 -215 to 215-1

int

32 bits

 -231 to 231-1

long
64 bits

 -263 to 263-1

(formula - 2n to 2n-1)

5) floating point – It is declared using either of the keywords float or double
 double is the default type. Its literal value contains any of the following:

 . a decimal point

E or e add an exponential value

D or d for double
F or f for float
e.g.

3.14 == 3.14d == 3.14D a simple floating point value, all these three numbers are of type double

6.02e-23 a large floating point value

6.02 x10-23
2.718f a simple float value

123.4e+306d a large double value with a redundant d

A String is not a primitive data type and will be discussed later.

String value.It may, however, be declared like a primitive data. Its literal value is enclosed in double quotations.

e.g.

String greeting = “Hello World!”;

String err_msg = “Record not found!”;

System.out.println(greeting);

Operators and Expressions
Input

(to be discussed in detail in the 4th quarter : IOStreams)

Key in data from the keyboard, mouse, or any other input device which is then assigned to a variable. To input, you can use: readln()or read(). Getting inputs thru a graphical interface may also be done using event listener interfaces (to be discussed in the 3rd quarter).

e.g.

InputStreamReader ir;

BufferedReader in;

ir = new InputStreamReader(System.in);

in = new BufferedReader(ir);

while ((s = n.readLine()) != null) {

System.out.println("read" + s);

Output

The output displays an identifier to an output device to allow the user to see the processed data. The different Java code for output are:

System.out.println (variable);

// no need for having a stream writer though this may also be used

paint (); // used only in applets or in a GUI

show ();

setVisible (); // parameter is either true or false

Assignment

Assignment statements are used to assign new values to variables. The expressions on both sides of the equation must be of the same data type.

e.g.

int x = 10; // variable x assigned the value 10

Operators (from www.java.sun.com)

Binary Arithmetic Operators
	Operator
	Use
	Description

	+
	op1 + op2
	Adds op1 and op2; also used to concatenate strings

	-
	op1 - op2
	Subtracts op2 from op1

	*
	op1 * op2
	Multiplies op1 by op2

	/
	op1 / op2
	Divides op1 by op2

	%
	op1 % op2
	Computes the remainder of dividing op1 by op2

Result Types of Arithmetic Operations
	Data Type of Result
	Data Type of Operands

	long
	Neither operand is a float or a double (integer arithmetic); at least one operand is a long.

	int
	Neither operand is a float or a double (integer arithmetic); neither operand is a long.

	double
	At least one operand is a double.

	float
	At least one operand is a float; neither operand is a double.

Unary Arithmetic Operators
	Operator
	Use
	Description

	+
	+op
	Promotes op to int if it's a byte, short, or char

	-
	-op
	Arithmetically negates op

Shortcut Arithmetic Operators
	Operator
	Use
	Description

	++
	op++
	Increments op by 1; evaluates to the value of op before it was incremented

	++
	++op
	Increments op by 1; evaluates to the value of op after it was incremented

	--
	op--
	Decrements op by 1; evaluates to the value of op before it was decremented

	--
	--op
	Decrements op by 1; evaluates to the value of op after it was decremented

Relational Operators

A relational operator compares two values and determines the relationship between them.
	Operator
	Use
	Description

	>
	op1 > op2
	Returns true if op1 is greater than op2

	>=
	op1 >= op2
	Returns true if op1 is greater than or equal to op2

	<
	op1 < op2
	Returns true if op1 is less than op2

	<=
	op1 <= op2
	Returns true if op1 is less than or equal to op2

	==
	op1 == op2
	Returns true if op1 and op2 are equal

	!=
	op1 != op2
	Returns true if op1 and op2 are not equal

Conditional Operators
	Operator
	Use
	Description

	&&
	op1 && op2
	Returns true if op1 and op2 are both true; conditionally evaluates op2

	||
	op1 || op2
	Returns true if either op1 or op2 is true; conditionally evaluates op2

	!
	!op
	Returns true if op is false

	&
	op1 & op2
	Returns true if op1 and op2 are both boolean and both true; always evaluates op1 and op2; if both operands are numbers, performs bitwise AND operation

	|
	op1 | op2
	Returns true if both op1 and op2 are boolean and either op1 or op2 is true; always evaluates op1 and op2; if both operands are numbers, performs bitwise inclusive OR operation

	^
	op1 ^ op2
	Returns true if op1 and op2 are different — that is, if one or the other of the operands, but not both, is true

Shortcut Assignment Operators
	Operator
	Use
	Equivalent to

	+=
	op1 += op2
	op1 = op1 + op2

	-=
	op1 -= op2
	op1 = op1 - op2

	*=
	op1 *= op2
	op1 = op1 * op2

	/=
	op1 /= op2
	op1 = op1 / op2

	%=
	op1 %= op2
	op1 = op1 % op2

	&=
	op1 &= op2
	op1 = op1 & op2

Coding Conventions

Java code has developed conventions to easily identify code statements. Nouns are to be capitalized, whereas verbs are to be written in the lower case. The second word in a command should be in the upper case.

e.g.

getSum

setNum

ActionEvent

getNum

Comments or Remarks

Comments or remarks are used to place notes or explanations in the Java code.

These notes are indicated by

//

- for single line comment

/* . . . */
- for multiple line comment

/** . . . */
- for HTML documentation

e.g

int j;

//declares a variable j

j = 1;

// assigns the value of j

for (i=0; i<5; i++) {

j = j + j;

/* implements

the value of j by 1 */

}

Control Structures

Block Structures

The group of statements enclosed within two braces, { }.

Blocks within blocks are allowed in the Java language. It creates a scope for the local variables declared inside the block. Scope refers to the part of the program wherein a variable exists and can be used.

Condition and Selection

In statements involving decision-making, the if-else and switch-case statements are used. The if-else statement allows you to selectively execute statements based on some criteria.

Syntax:

if (<condition>)

// condition is a boolean expression

<statement/s>;

[

// else is optional

 else

<statement/s>;

]

// use { } if there is more than one line of code

e.g.

if (response == OK) {

//response is either OK or CANCEL, depending on the button pressed

// code for OK response goes here

}

else {

//code for CANCEL response
}

The switch statement allows you to conditionally perform statements based on some expression.

Syntax:

switch (<expression>) {

case <option1> : <statement/s>; break;

case <option2> : <statement/s>; break;

…

case <optionN> : <statement/s>; break;

default: <statement/s>;

}

Take the following program as an example. It contains an integer named month whose value indicates the month in some given date. You want to display the name of the month based on its integer equivalent.

e.g.
switch (month) {

case 1:System.out.println(“January”);break;

case 2:System.out.println(“February”);break;

case 3:System.out.println(“March”);break;

…

}

Loops

Introduction

The loop mechanism allows for a sequence of statements to be executed repeatedly, as long as a certain condition holds true. Once the condition ceases to hold, program control is passed to the statement immediately after the last statement within the loop. Such repeated execution is called iteration.

In simple terms, a loop enables a statement to keep repeating until a certain condition becomes false. Each time the body of the loop is executed, at least one variable should change its value. Therefore, repeated execution has a cumulative effect.

After a finite time, the loop should cause the condition that started it to become false. Failure to do so creates an infinite loop, which represents a programming error. Termination of the loop would then require an external means, which proves to be inconvenient to the user.

The Java Programming Language supports three types of loop constructs: for, while and do loops.

The for Loop

The for loop construct provides automatic management of the loop index that determines the number of iterations. The syntax of a for loop is:

Syntax:

for (<initialization>; <boolean expression>; <increment or decrement>) {

statements;

}

e.g.

for (int a=0; a<15; a ++) {

System.out.println(““+a+””); //prints the numbers 1-15
}

This loop tests the condition before the execution of statements within the loop body. The loop is executed by first testing the boolean expression. If the value is false, program control will transfer out of the loop into the statement immediately after the loop.

If the value is true, the statement inside the loop body is executed. The alternate expression a++ indicates that after one iteration, the value of a is incremented by one. Program control then returns to the boolean expression.

It is a good practice to initialize loop control variables before the loop body begins execution and ensure that the loop condition is true to begin with. The control variable must be updated appropriately to prevent an infinite loop.

The while Loop

Syntax:

<initialization>;

while (<boolean expression>) {

<statements>;

<increment or decrement>;
}

A for loop construct can be converted to a while loop construct as they can perform the same job. The difference is that the for loop can provide a more convenient and organized version of the while loop construct. Take for instance the previous example.

for (int a = 0; a < 10; a++) {

System.out.println (""+a+"");

 }
will become:

 int a = 0;

 while (a < 10) {

System.out.println (""+a+""); a++;

}

The do-while Loop

The do loop is much the same as the while loop except that the do loop ensures the loop body is executed at least once. Since the while loop tests the loop condition before executing the loop statements, a false condition will cause the body not to be executed. But the do loop executes the statement before the condition is checked.

Syntax:

<initialization>;
do{

<statement/s>;

<increment or decrement>;
} while (boolean expression);

In the do loop, loop control variables must also be appropriately initialized, updated in the body of the loop and properly tested. The ff. statements can be used to further control loop statements:

The break statement is used to exit from switch statements, loop statements, and labeled blocks prematurely.

The continue statement is used to skip over and jump to the end of the loop body.

Label identifies any valid statement to which control needs to be transferred. It is used to identify a compound statement that is a loop construct.

break[label];

continue[label];

label: statement;

 //where statement must be any legal statement.

Arrays

Introduction

An array is an ordered collection of simple data types referred to collectively by a single name. The number of subscripts of an array determines its dimensions. One-dimensional arrays refer to vectors, while a two-dimensional array corresponds to a matrix.

Separate data items in the array are called array elements and are ordered by their subscripts or indexes. Array elements have two characteristics: its position in the array as determined by its index, and its value.

Array Declaration, Allocation and Initialization

Syntax:
<data type> <arrayname> [] = new <data type> [arraysize];

<data type> [] <arrayname> = new <data type> [arraysize];

The first step in creating an array is to declare a variable to hold the array. Array variables indicate two things: the object or data-type the array will hold, and the name of the array. To differentiate array declaration from normal variable declaration, a pair of brackets is added to the data type or to the array name. The number of elements is written in the braces.

e.g.

 String TeamMembers [] ;
 String [] TeamMembers;

The next step is to create an array object and assign it to the array variable. This is otherwise known as allocation, which is the same as “instantiation” since the keyword new is also used. The new keyword is used in creating an array object in Java. Creating an array initializes each element and assigns a null character to it. The following examples declare and create/allocate arrays at the same time.

e.g.

String TeamMembers [] = new String [6];

int Quiz [] = new int [5];

To initialize the array, or to store in it initial information, each element will be assigned a value. Using the above example,

TeamMembers [0] = “Benbenini”;

TeamMembers [1] = “KarenB”;

TeamMembers [2] = “JoyBrioso”;

TeamMembers [3] = “Lenlen”;

TeamMembers [4] = “First Lady”;

TeamMembers [5] = “LJ”;

Another way to initialize an array is by enclosing the elements of the array, separated by commas, in braces.

String TeamMembers [] = {

“Benbenini”, “KarenB”, “JoyBrioso”, “Lenlen”,

“First Lady”,“LJ”

};

The number of initial values becomes the memory size allocated for the array. Keep in mind that all elements in the braces must be of the same type as the array type. Initialization of all variables is essential to the security of the system. Variables must not be used until they are initialized.

Accessing Array Elements

Once an array has been initialized, all its elements can now be accessed. Access of values proceed in the following manner:

TeamMember [4] = “First Lady”;

In the example, TeamMember [4] is the fifth element and “First Lady” is its value or contents. Subscripts of arrays must always be in the legal range. That is they must be between zero and one less than the length of the array. Else, an error will result. Take the following example:

Float Average [] = new Float [5];

Average [5] = 1.500;

The assignment statement Average [5] = 1.500 will be invalid since Average [5] is out of the legal bound of the array.

Array elements can be changed using assignment statements. Each array element will be referred to through its index and assigned another value. In the following example, the value of all CountNum elements will be six.

int CountNum [] = {1,2,3,4,5,6};

int i,j;

for (i=0; j=5; i>5; i++; j--) {

CountNum[i] = CountNum[i] + j;

}

Multidimensional Arrays

The Java programming language provides a different approach on multidimensional arrays. Since an array can be declared to have any base type, the creation of arrays within arrays is possible.

e.g.

int Matrix = new int [5] [];

Matrix [0] = new int [5];

Matrix [1] = new int [3];

The first new creates five null references to an element which is also an array of type int. Each element must then be initialized. To initialize rectangular arrays, simply write the dimensions inside the brackets:

int Matrix = new int [5][5];

Java allows arrays to be initialized separately. This separation of elements allows you to create irregular or non-rectangular arrays. Thus, the elements can be initialized as follows:

Matrix [0] = new int [5];

Matrix [1] = new int [3];

Matrix [2] = new int [6];

Matrix [3] = new int [1];
Matrix [4] = new int [4];

If illustrated, Matrix would look like this:

	0,0
	0,1
	0,2
	0.,3
	0,4

	1,0
	1,1
	1,2

	2,0
	2,1
	2,2
	2,3
	2,4
	2,5

	3,0

	4,0
	4,1
	4,2
	4,3

Strings

Basic String Operations and Methods

A series of characters enclosed within double quotes is called a literal string. Some examples of liter strings are “Hello”, “Good Morning”, “Augustine”, “Maxima”.

In Java, objects that can hold string literals are called string objects. A Java string object is derived from the class String defined in the package java.lang.String. Having a class for Strings means that you can use a full range of methods to manipulate them.

int Length()

The length of a string is the number of characters it contains. To obtain this value, call the length() method, shown here.

char charAt(int index)

The index of the first character in a string is 0. charAt returns the character at a specified index in the stringThis means you can get the nth character in a string using the index n-1

eg.

public static void main (String args[]) {

String s = "Java";

System.out.println("3rd letter " + s.charAt(2));

}

void getChars((int i1, int, i2, char[] dst, int i3))

//Copies the character in the String from position i1 to position i2 into character array dst, starting at index i3.

String concat(String s)

//Concatenates the string s to the end of this string. Note that

there are two ways of concatenating strings

eg.

 public static void main (String args[]) {

 String s1 = "abc";

 String s2 = "def";

 System.out.println(s1 + s2);

 System.out.println(s1.concat(s2));

 //The output of these statements are both "abcdef"

Creating and Initializing Strings

A string object may be created in several ways.

e.g.

String str = new String ();

String str1 = new String("This is a test."); //From another string
String str2 = “Good morning”;

String str3 = new String(charArray);

//From a char array

String str4 = new String(byteArray);

//From a byte array

str is an instance of String with no characters in it. Note that you can put a value in the String if you place value (String literal) inside the parentheses such as str1. Another way is to directly initialize a String object with a string literal, e.g. str2. String objects (str3, str4) can also be created using String constructors. String constructors can create new strings from other strings, from arrays of characters. Some examples of String

constructors are shown below.

The String variables str, str1, str2, str3, str4, are actually references. They contain not the actual string literal but the memory address where the string object is stored.

 str1
String Comparison

When the operator == is used to compare two string variables, what is compared are the memory addresses and not the string values. Thus two string values may be compared using the methods equals, equalsIgnoreCase, and compareTo. When two strings are compared, they are compared according to the lexicographic sequence of the characters of the strings. If the strings being compared are more than one character long, then the comparison starts at the first character in each string. If the two characters are equal, then it moves to the next character until it the first difference is found. If not, then the two strings are considered equal.

s1.equals(s2)

The method equals compares two strings and returns true if they contain identically the same value.

e.g.

s1 = new String("Hello")

s2 = new String("Hello")

s3 = new String("hello")

The expression s1.equals (s2) will be true because the two strings are identically the same, while the expression s1.equals (s3) will yield false.

s1.equalsIgnoreCase(s3)

The method equalsIgnoreCase is similar to equals except that it ignores the case of letters when comparing the two strings. In the above example, the expression

s1.equalsIgnoreCase(s3)

will yield true.

s1.compareTo(s2)
The method compareTo compares two strings s1 and s2, and returns an integer equal to the difference in lexicographic position i.e., according to their Unicode values, between the corresponding letters at the first differing location in the strings.

The difference will be negative if s1 < s2 and positive if s1 > s2. If the strings are equal, then the method will return zero. Here are some examples:

s1 = new String("Good");

s2 = new String("Help");

s3 = new String("HELP");

s4 = new String("HELP");

The expression s1.compareTo(s2) will be -1 because the letter 'G' appears one character before 'H' in the Unicode character set. Similarly, the expression s2.compareTo(s3) will be 32 because the letter 'e' appears 32 characters after 'E' and the expression s3.compareTo(s4) will be zero since the strings are equal.

Lexicographic Sequence

This is the sequence in which the character appear within the character set used by the computer. For example, in the first 127 letters in the Unicode character set, the letter 'A' is character 64 and the letter 'a' is 96, so 'A' is lexicographically less than 'a'.

Sources.

http:// java.sun.com

Java programming by Joyce Farrell

“This is a test.”

